2,059 research outputs found

    Classification under Streaming Emerging New Classes: A Solution using Completely Random Trees

    Get PDF
    This paper investigates an important problem in stream mining, i.e., classification under streaming emerging new classes or SENC. The common approach is to treat it as a classification problem and solve it using either a supervised learner or a semi-supervised learner. We propose an alternative approach by using unsupervised learning as the basis to solve this problem. The SENC problem can be decomposed into three sub problems: detecting emerging new classes, classifying for known classes, and updating models to enable classification of instances of the new class and detection of more emerging new classes. The proposed method employs completely random trees which have been shown to work well in unsupervised learning and supervised learning independently in the literature. This is the first time, as far as we know, that completely random trees are used as a single common core to solve all three sub problems: unsupervised learning, supervised learning and model update in data streams. We show that the proposed unsupervised-learning-focused method often achieves significantly better outcomes than existing classification-focused methods

    Foreword

    Get PDF
    Proteins that contain long disordered regions are prevalent in the proteome and frequently associated with diseases. However, the mechanisms by which such intrinsically disordered proteins (IDPs) recognize their targets are not well understood. Here, we report the first experimental investigation of the interaction kinetics of the nuclear co-activator binding domain of CREB-binding protein and the activation domain from the p160 transcriptional co-activator for thyroid hormone and retinoid receptors. Both protein domains are intrinsically disordered in the free state and synergistically fold upon binding each other. Using the stopped-flow technique, we found that the binding reaction is fast, with an association rate constant of 3 x 10(7) M-1 s(-1) at 277 K. Mutation of a conserved buried intermolecular salt bridge showed that electrostatics govern the rapid association. Furthermore, upon mutation of the salt bridge or at high salt concentration, an additional kinetic phase was detected (similar to 20 and similar to 40 s(-1), respectively, at 277 K), suggesting that the salt bridge may steer formation of the productive bimolecular complex in an intramolecular step. Finally, we directly measured slow kinetics for the IDP domains (similar to 1 s(-1) at 277 K) related to conformational transitions upon binding. Together, the experiments demonstrate that the interaction involves several steps and accumulation of intermediate states. Our data are consistent with an induced fit mechanism, in agreement with previous simulations. We propose that the slow transitions may be a consequence of the multipartner interactions of IDPs

    Entanglement R\'enyi α\alpha -entropy

    Full text link
    We study the entanglement R\'{e}nyi α\alpha-entropy (ERα\alpha E) as the measure of entanglement. Instead of a single quantity in standard entanglement quantification for a quantum state by using the von Neumann entropy for the well-accepted entanglement of formation (EoF), the ERα\alpha E gives a continuous spectrum parametrized by variable α\alpha as the entanglement measure, and it reduces to the standard EoF in the special case α→1\alpha \rightarrow 1. The ERα\alpha E provides more information in entanglement quantification, and can be used such as in determining the convertibility of entangled states by local operations and classical communication. A series of new results are obtained: (i) we can show that ERα\alpha E of two states, which can be mixed or pure, may be incomparable, in contrast to the fact that there always exists an order for EoF of two states; (ii) similar as the case of EoF, we study in a fully analytical way the ERα\alpha E for arbitrary two-qubit states, the Werner states and isotropic states in general d-dimension; (iii) we provide a proof of the previous conjecture for the analytical functional form of EoF of isotropic states in arbitrary d-dimension.Comment: 11 pages, 4 figure
    • …
    corecore